COVID-19 Segmentation:

A Weakly Supervised Consistency-based Learning Method for COVID-19 Segmentation in CT Images

Accepted at WACV2021 Conference

Issam Laradji, Pau Rodriguez, Oscar Mañas, Keegan Lensink, Marco Law, Lironne Kurzman, William Parker, David Vazquez, Derek Nowrouzezahrai

COVID-19 is a global pandemic

- Over 55 million cases around the world
 - Over 1.3 million deaths
- Hospitals are overwhelmed
- Its long- and short-term effects are still unknown

Develop a System for Analyzing COVID-19

- CT Scans help provide
 - Effective diagnosis
 - Follow-up assessment
 - Disease evolution
- Deep learning (DL) methods have been successful for identifying infected regions
- But, successful DL methods need
 - Fully supervised training labels
 - The labels are expensive to acquire

Contributions

- Proposed a deep learning method that can learn segmentation from point-level labels
 - A single point annotation per infected region
 - A consistency loss that ensures consistent output under flips and rotation
- Segmentation results on par with the fully-supervised on 3 COVID-19 datasets
 - Although, acquiring mask labels takes around 5 times more than point-level

Point-level Supervision

- Point-level Loss $\mathcal{L}_P(X_i, Y_i) = -\sum_{i \in \mathcal{I}_i} \log(f_{\theta}(X_i)_{jY_j})$, (2)
- Consistency loss $\mathcal{L}_C(X_i) = \sum_{j \in \mathcal{P}_i} |t_k(f_{\theta}(X_i))_j f_{\theta}(t_k(X_i))_j|,$ (3)

Datasets and Evaluation

- 3 open source COVID-19 datasets
- For each dataset we have two splits
 - O **Mixed**: train, val, test slices come from **different** scans
 - Separate: train, val, test slices come from the same scans

Name	# Cases	# Slices	# Slices with Infections (%)	# Infected Regions	
COVID-19-A	60	98	98 (100.0%)	776	
COVID-19-B	9	829	372 (44.9%)	1488	
COVID-19-C	20	3520	1841 (52.3%)	5608	

Original Image

Full Supervision (Conventional)

Point-level Supervision (Ours)

Results

Table 5: COVID-19-C-Mixed Segmentation Results

Loss Function	Dice	IoU	PPV	Sens.	Spec.
Fully Supervised	0.78	0.64	0.79	0.77	1.00
Point Loss (PL)	0.12	0.07	0.07	0.95	0.82
CB(Flip) + PL (Ours)	0.66	0.49	0.56	0.80	0.99
CB(Flip, Rot) + PL (Ours)	0.68	0.51	0.56	0.85	0.99

$$\mathcal{L}(X,Y) = \sum_{i=1}^{N} \underbrace{\mathcal{L}_{P}(X_{i}, Y_{i})}_{\text{Point-level}} + \lambda \underbrace{\mathcal{L}_{C}(X_{i})}_{\text{Consistency}},$$
(1)

Original Image

Point Loss (PL)

Consistency Loss CB(Flip, Rot) + PL

Conclusions

COVID-19 Segmentation

1

A Simple
Consistency-based
Loss Function

2

Annotators only have to label a single point per region

3

Achieved SOTA for COVID-19 Weakly Supervised Segmentation

Code Available: https://github.com/lssamLaradji/covid19_weak_supervision