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Scope of the work

* NOT ABOUT causal reasoning of Large Language Models

* ABOUT leveraging information from related tasks
* by querying an (imperfect) expert
* via variables’ meta-data (e.g., their name or description)
* to reduce uncertainty in data-based causal discovery methods



Causal Discovery
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How to reduce uncertainty?



Causal Discovery with Expert Knowledge
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Expert orientations and their probability

Key point: We do NOT assume that the experts are perfect



Causal Discovery with Expert Knowledge

min [M"?]
such thatp(G* - ME’S) >1—n,
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Causal Discovery with Expert Knowledge

min ‘MES|

such that{ (G*e M™ S)} >1-—mn,

Probability or

estimated via Bayesian inference:

P(edges are correctly oriented | we observed such expert orientations)



Causal Discovery with Expert Knowledge

min ‘MES|

such that p(G* € M) 2@ _77}

Hyper-parameter



Expert Model

Assumption: Expert makes independent decisions

p(Eq, ..., Byl 01, ey Oy, ey Opyy) = 11 p(E; 0)



Bayesian Posterior

By, Byl 01,0)0p(01,0,)
p(01, 02| El: ...,Eu ) =k [p(El,...,EJ)J g




Edge orientations are inter-dependent
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Posterior cannot be factorized as we do for the likelihood

Perkovic, Emilija, Markus Kalisch, and Maloes H. Maathuis. "Interpreting and using CPDAGs with background knowledge." arXiv preprint arXiv:1707.02171 (2017).



Edge orientations are inter-dependent
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(we marginalize to get prior and posterior probabilities of subset of edges)

Perkovic, Emilija, Markus Kalisch, and Maloes H. Maathuis. "Interpreting and using CPDAGs with background knowledge." arXiv preprint arXiv:1707.02171 (2017).



Considered experts

gives wrong orientation with constant probability of error

: ? we trust their confidence estimate



Are LLMs calibrated?
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Figure 8. Left: Calibration plot of the pre-trained GPT-4 model on a subset of the MMLU dataset. On
the x-axis are bins according to the model’s confidence (logprob) in each of the A/B/C/D choices for
each question; on the y-axis is the accuracy within each bin. The dotted diagonal line represents perfect
calibration. Right: Calibration plot of the post-trained GPT-4 model on the same subset of MMLU. The
post-training hurts calibration significantly.

Achiam, Josh, et al. "Gpt-4 technical report." arXiv preprint arXiv:2303.08774 (2023).
Kadavath, Sauray, et al. "Language models (mostly) know what they know." arXiv preprint arXiv:2207.05221 (2022).



Scoring orientations with LLMs

Among these two options which one is the most likely true:
(A) lung cancer causes cligarette smoking

(B) cigarette smoking causes lung cancer’
The answer is:

We compute likelihood of (A) and likelihood of (B)
... and normalize



Randomizing the prompt

Among these two options which one is the most likely true:

(&) {pi} {verbi} {u;}
(B) {u;} {verbp} {mi}

The answer 1is:



Greedy Algorithm
min |MES}
such thatp(G* EME’S) >1—n

1. Query expert on all unoriented edges (E4, ..., E})
2. FOR each potential new orientation O;, we compute the posterior:

p(O;, O;| Eq, ..., Ey)
Where 0; is the set of orientations consequential to orienting
3. Select ( 0;,0; ) with the highest posterior
4. |F posterior of updated graph does not satisfy tolerance constraint, STOP
5. ELSE back to 2.



Results
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Future Work

* Expert model is quite unrealistic
How to account for systematic errors?

* Computing posterior requires enumerating all graphs in MEC
How to scale to large number of variables?



Thanks!

* https://arxiv.org/abs/2307.02390

* https://github.com/StephLong614/Causal-disco-LLM-imperfect-
experts
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