# **DAG** Learning on the Permutahedron

Valentina Zantedeschi, Luca Franceschi, Jean Kaddour, Matt J. Kusner, Vlad Niculae

To appear at ICLR 2023, Rwanda January 28, 2023



### **Problem Statement**

# Bayesian Network Directed Acyclic Graph (DAG)



## Markov Factorization of joint distribution

$$p(X_1, X_2, X_3, X_4) = \prod_{i=1}^4 p(X_i \mid pa(X_i))$$
  
=  $p(X_1 \mid X_2)p(X_2)p(X_3 \mid X_2, X_4)p(X_4 \mid X_2)$ 

- a DAG represents
  - parent-child dependences
  - conditional independences

1

#### **Problem Statement**

# Bayesian Network Directed Acyclic Graph (DAG)



## Markov Factorization of joint distribution

$$p(X_1, X_2, X_3, X_4) = \prod_{i=1}^4 p(X_i \mid pa(X_i))$$
  
=  $p(X_1 \mid X_2)p(X_2)p(X_3 \mid X_2, X_4)p(X_4 \mid X_2)$ 

- a DAG represents
  - parent-child dependences
  - conditional independences

How can we learn DAG from data generated from joint distribution?

1

## **Applications**

Bayesian Network
Directed Acyclic Graph (DAG)



Causal Discovery edge := cause-effect link
 →help reason about interventions:
 What happens if we increase interest rates?

# **Applications**

Bayesian Network
Directed Acyclic Graph (DAG)



Causal Discovery edge := cause-effect link
 →help reason about interventions:
 What happens if we increase interest rates?

Interpretability sparsest set of dependences
 →help interpret model predictions:
 Which features were decisive?



#### Estimation:

model speficication assumptions on edge functions

$$p(X_i \mid pa(X_i))$$

identifiability non-uniqueness (identify up to

Markov Equivalence Class [PJS17])

approximation finite sample from joint distribution



#### Estimation:

model speficication assumptions on edge functions

 $p(X_i \mid pa(X_i))$ 

identifiability non-uniqueness (identify up to

Markov Equivalence Class [PJS17])

approximation finite sample from joint distribution



#### Estimation:

model speficication assumptions on edge functions

$$p(X_i \mid pa(X_i))$$

identifiability non-uniqueness (identify up to

Markov Equivalence Class [PJS17])

approximation finite sample from joint distribution



#### Estimation:

model speficication assumptions on edge functions

$$p(X_i \mid pa(X_i))$$

identifiability non-uniqueness (identify up to Markov Equivalence Class [PJS17])

approximation finite sample from joint distribution

#### Computation:

NP-hard because of acyclicity constraint [Chi95]

d variables, binary adjacency matrix  $B \in \{0,1\}^{d^2}$ 

d variables, binary adjacency matrix  $B \in \{0,1\}^{d^2}$ 

**hop-1** if  $\exists i \mid B_{ii} = 1$  then self-loop exists  $trace(B^1)$  counts the number of such cycles

d variables, binary adjacency matrix  $B \in \{0,1\}^{d^2}$ 

**hop-1** if  $\exists i \mid B_{ii} = 1$  then self-loop exists  $trace(B^1)$  counts the number of such cycles

**hop-2** if  $\exists i, j \mid B_{ij}B_{ji} = 1$  then length-2 cycle exists  $trace(B^2)$  counts the number of such cycles

d variables, binary adjacency matrix  $B \in \{0,1\}^{d^2}$ 

- **hop-1** if  $\exists i \mid B_{ii} = 1$  then self-loop exists  $trace(B^1)$  counts the number of such cycles
- **hop-2** if  $\exists i,j \mid B_{ij}B_{ji}=1$  then length-2 cycle exists  $trace(B^2)$  counts the number of such cycles
- **hop-k** if  $\exists$   $\{i_1, i_2, \dots, i_k\} \mid \prod_j B_{i_j i_{j+1}} = 1$  then length-k cycle exists  $trace(B^k)$  counts the number of such cycles

d variables, binary adjacency matrix  $B \in \{0,1\}^{d^2}$ 

$$\sum_{k=1}^{\infty} \frac{trace(B^k)}{k!} = trace(\exp(B)) - trace(B^0) = trace(\exp(B)) - d$$

d variables, binary adjacency matrix  $B \in \{0,1\}^{d^2}$ 

### **Constrained Optimization Problem**

Data  $X \in \mathbb{R}^{nd}$  and weighted adjacency matrix  $W \in \mathbb{R}^{d^2}$ 

$$arg \min_{W} \mathcal{L}(X, W)$$
s.t.  $trace(\exp(W \circ W)) - d = 0$ 

Solve by e.g. Augmented Lagrangian. Then, threshold W to get B.

d variables, binary adjacency matrix  $B \in \{0,1\}^{d^2}$ 

#### Advantages

- 1. genericity: nonparametric (neural) edge functions (e.g. [ZDA+20, LBDL20])
- 2. scalability: data size, number of parameters cubic complexity in number of variables (up to  $\sim$  500)

#### **Downsides**

- 1. invalidity: not a DAG at training and at convergence
- 2. non-modularity: require differentiable operations
- 3. scale-sensitive: tend to order variables (root to sink) by marginal variance [RSW21]



1 Learn total ordering of variables









2 Get corresponding complete DAG



3 Mask out inconsistent edges





3 Mask out inconsistent edges



 $\mathbf{R}^{\sigma}$ : row and column permutation of strictly upper-triangular binary matrix:  $\mathbf{R} \in \{0,1\}^{d \times d}$ 

4 Prune unnecessary edges





4 Prune unnecessary edges



Space of orderings is smaller and more regular than space of DAGs [FK03, TK05]

Score vector  $\theta \in \mathbb{R}^d$  inducing an ordering  $\sigma(\theta) \in \Sigma_d$  the smaller the score, the lower the rank

Score vector  $\theta \in \mathbb{R}^d$  inducing an ordering  $\sigma(\theta) \in \Sigma_d$  the smaller the score, the lower the rank

### **Optimization Problem**

$$\sigma(\boldsymbol{\theta}) \in \operatorname{arg\,max}_{\sigma \in \Sigma_d} \boldsymbol{\theta}^{ op} \boldsymbol{\rho}^{\sigma} \,, \quad \text{where } \boldsymbol{\rho} = [1, 2, \dots, d] \,.$$

degeneracy in case of ties (some components of heta are equal)

6

Score vector  $oldsymbol{ heta} \in \mathbb{R}^d$  inducing an ordering  $\sigma(oldsymbol{ heta}) \in \Sigma_d$ 

### **Optimization Problem**

$$\sigma(\boldsymbol{\theta}) \in \operatorname{arg\,max}_{\sigma \in \Sigma_d} \boldsymbol{\theta}^{\top} \boldsymbol{\rho}^{\sigma} \,, \quad \text{where } \boldsymbol{\rho} = [1, 2, \dots, d] \,.$$

degeneracy in case of ties (some components of heta are equal)

ORACLE  $\sigma(\theta) = \operatorname{arg} \operatorname{sort}(\theta)$  (due to The Rearrangement Inequality [HLP52]).

6

Score vector  $oldsymbol{ heta} \in \mathbb{R}^d$  inducing an ordering  $\sigma(oldsymbol{ heta}) \in \Sigma_d$ 

#### **Relaxed Optimization Problem**

$$\mu( heta) = \operatorname{arg\,max}_{oldsymbol{\mu} \in \mathbb{P}[d]} oldsymbol{ heta}^ op oldsymbol{\mu} - rac{ au}{2} \|oldsymbol{\mu}\|_2^2$$

**soft** ordering  $\mu(\theta)$ 



cc R. A. Nonenmacher

Score vector  $oldsymbol{ heta} \in \mathbb{R}^d$  inducing an ordering  $\sigma(oldsymbol{ heta}) \in \Sigma_d$ 

#### **Relaxed Optimization Problem**

$$oldsymbol{\mu}(oldsymbol{ heta}) = \operatorname{arg\,max}_{oldsymbol{\mu} \in \mathbb{P}[d]} oldsymbol{ heta}^ op oldsymbol{\mu} - rac{ au}{2} \|oldsymbol{\mu}\|_2^2$$

**soft** ordering  $\mu(\theta)$ 



cc R. A. Nonenmacher

Score vector  $oldsymbol{ heta} \in \mathbb{R}^d$  inducing an ordering  $\sigma(oldsymbol{ heta}) \in \Sigma_d$ 

### **Relaxed Optimization Problem**

$$\mu( heta) = \operatorname{arg\,max}_{\mu \in \mathbb{P}[d]} heta^ op \mu - rac{ au}{2} \|\mu\|_2^2$$

**soft** ordering  $\mu(\theta)$ 



cc R. A. Nonenmacher

but cannot rank variables. We need a tractable decomposition of  $\mu(\theta)$  into hard orderings: cannot use all d! orderings

# SparseMAP [NMBC18]

Let D = d! be the total number of orderings, and  $\triangle^D$  be the D-dimensional simplex

$$\mu = \sum_{\sigma \in \mathsf{\Sigma}_d} lpha_\sigma 
ho^\sigma$$

# SparseMAP [NMBC18]

Let D = d! be the total number of orderings, and  $\triangle^D$  be the D-dimensional simplex

$$\mu = \sum_{\sigma \in \Sigma_d} lpha_\sigma 
ho^\sigma$$

#### Sparse decomposition - categorical regularization

$$oldsymbol{lpha}^{\mathsf{sparseMAP}}(oldsymbol{ heta}) \in \mathsf{arg\,max}_{oldsymbol{lpha} \in riangle^D} \, oldsymbol{ heta}^ op \mathbb{E}_{\sigma \sim oldsymbol{lpha}}[oldsymbol{
ho}_\sigma] - rac{ au}{2} \, \| \mathbb{E}_{\sigma \sim oldsymbol{lpha}}[oldsymbol{
ho}_\sigma] \|_2^2 \, ,$$

solved by Active-Set Algorithm [NW99]  $\rightarrow$  calls to argsort oracle

# Top-k Sparsemax [CNAM20]

Let D = d! be the total number of orderings, and  $\triangle^D$  be the D-dimensional simplex

$$\mu = \sum_{\sigma \in \mathsf{\Sigma}_d} lpha_\sigma 
ho^\sigma$$

## **Top-***k* **Sparsemax** [CNAM20]

Let D = d! be the total number of orderings, and  $\triangle^D$  be the D-dimensional simplex

$$\mu = \sum_{\sigma \in \Sigma_d} \alpha_\sigma \rho^\sigma$$

## Sparse decomposition - marginal regularization

For k > 2

$$oldsymbol{lpha}^{\mathsf{top-}k} \, \mathsf{sparsemax}(oldsymbol{ heta}) \in \mathsf{arg} \, \mathsf{max}_{oldsymbol{lpha} \in riangle^D, \|oldsymbol{lpha}\|_0 \leq k} \, oldsymbol{ heta}^ op \mathbb{E}_{\sigma \sim oldsymbol{lpha}}[oldsymbol{
ho}^\sigma] - rac{ au}{2} \, \|oldsymbol{lpha}\|_2^2 \, ,$$

 $\rightarrow$  calls to top-k permutations oracle

## **Top-***k* **Permutations Oracle - Contribution!**

$$\begin{split} \mathbf{Data:} \ k &\in \{1, \dots, d!\}, \ \boldsymbol{\theta} \in \mathbb{R}^d \\ \mathbf{Result:} \ \mathsf{top-}k \ \mathsf{permutations} \ T_k(\boldsymbol{\theta}) \\ P(\boldsymbol{\theta}) &\leftarrow \{\sigma^1 \in_R \arg\max_{\sigma \in \Sigma_d} g_{\boldsymbol{\theta}}(\sigma)\}; \\ \mathbf{while} \ |T_k(\boldsymbol{\theta})| &\leq k \ \mathbf{do} \\ & \left| \begin{array}{c} \sigma \in_R \arg\max_{\sigma \in P(\boldsymbol{\theta}) \setminus T_k(\boldsymbol{\theta})} g_{\boldsymbol{\theta}}(\sigma); \\ P(\boldsymbol{\theta}) \leftarrow P(\boldsymbol{\theta}) \cup \{\sigma j \mid j \in \{1, \dots, d-1\}\}; \\ T_k(\boldsymbol{\theta}) \leftarrow T_k(\boldsymbol{\theta}) \cup \{\sigma\}; \end{array} \right. \end{aligned}$$

- set of candidates:  $P(\theta)$
- best permutations:  $T_k(\theta)$



- score:  $g_{\theta}(\sigma) = \theta^{\top} \rho^{\sigma}$
- adjacent transposition:  $\sigma j := \sigma \ (j \ j+1)$

# **Overall DAG Learning Problem**



$$\min_{oldsymbol{ heta}} \mathbb{E}_{\sigma \sim oldsymbol{lpha}^{\star}(oldsymbol{ heta})} \left[ \sum_{j=1}^{d} \ell\left( \mathbf{x}_{j}, f^{oldsymbol{\phi}_{j}}\left( \mathbf{X} \circ (\mathbf{\mathsf{R}}^{\sigma})_{j} 
ight) 
ight) + \lambda \Omega(oldsymbol{\Phi}) 
ight]$$

# **Overall DAG Learning Problem**



$$\begin{split} & \min_{\boldsymbol{\theta}} \; \mathbb{E}_{\sigma \sim \alpha^{\star}(\boldsymbol{\theta})} \left[ \sum_{j=1}^{d} \ell \left( \mathbf{x}_{j}, f^{\phi^{\star}(\sigma)_{j}} \left( \mathbf{X} \circ (\mathbf{R}^{\sigma})_{j} \right) \right) \right] \\ & \text{s.t.} \; \; \boldsymbol{\Phi}^{\star}(\sigma) = \arg \min_{\boldsymbol{\Phi}} \sum_{j=1}^{d} \ell \left( \mathbf{x}_{j}, f^{\phi_{j}} \left( \mathbf{X} \circ (\mathbf{R}^{\sigma})_{j} \right) \right) + \lambda \Omega(\boldsymbol{\Phi}) \end{split}$$

## Comparison with SOTA on Real Data

#### **Metrics**

SHD Structural Hamming Distance  $\rightarrow \#$  wrong edges

SID Structural Interventional Distance o # broken causal paths



## Comparison with SOTA on Real Data



# SparseMAP vs Top-k Sparsemax on Synthetic Data



- Validity: DAG at any stage of training
- End-to-end: order and edges jointly optimized
- Modularity: can plug-in non-differentiable edge estimators
- Pareto-optimality: empirically best trade-off SHD-SID

- Validity: DAG at any stage of training
- End-to-end: order and edges jointly optimized
- Modularity: can plug-in non-differentiable edge estimators
- Pareto-optimality: empirically best trade-off SHD-SID
- Scale-robustness? preliminary results suggest robust to variable scale

ullet Complexity: still at least quadratic in d

- Complexity: still at least quadratic in d
- $\bullet \ \, {\sf Sub-optimality} \colon {\sf combinatorial \ space} \, + \, {\sf relaxations} \,$

- Complexity: still at least quadratic in d
- Sub-optimality: combinatorial space + relaxations
- Non-uniqueness: a DAG is consistent with multiple orderings



















- Complexity: still at least quadratic in d
- Sub-optimality: combinatorial space + relaxations
- Non-uniqueness: a DAG is consistent with multiple orderings
- need for better understanding of relationship DAG-space vs Order-space

# Want to join the team?

**Opening** for research intern (remote or in Montreal)

https://www.servicenow.com/research/visiting\_researcher.html



Luca Franceschi, AWS



Matt Kusner, UCL



Vlad Nicular, UVA

Link to arxiv: https://arxiv.org/submit/4710329

Thank you for your attention!

#### References i

[BAR22] Kevin Bello, Bryon Aragam, and Pradeep Ravikumar.

DAGMA: learning dags via m-matrices and a log-determinant acyclicity characterization.

Advances in Neural Information Processing Systems, 2022.

[BTBD20] Mathieu Blondel, Olivier Teboul, Quentin Berthet, and Josip Djolonga.

Fast differentiable sorting and ranking.

In International Conference on Machine Learning, pages 950-959. PMLR, 2020.

[Chi95] David Maxwell Chickering.

Learning bayesian networks is np-complete.

In Doug Fisher and Hans-Joachim Lenz, editors, Learning from Data - Fifth International Workshop on Artificial Intelligence and Statistics, AISTATS 1995, Key West, Florida, USA, January, 1995. Proceedings. Springer, 1995.

[CNAM20] Gonçalo Correia, Vlad Niculae, Wilker Aziz, and André Martins.

Efficient marginalization of discrete and structured latent variables via sparsity.

Advances in Neural Information Processing Systems, 33, 2020.

[FK03] Nir Friedman and Daphne Koller.

Being bayesian about network structure. A bayesian approach to structure discovery in bayesian networks.

Machine learning, 50, 2003.

#### References ii

[HLP52] Godfrey Harold Hardy, John Edensor Littlewood, , and György Pólya.

Inequalities.

Cambridge University Press, 1952.

[LBDL20] Sébastien Lachapelle, Philippe Brouillard, Tristan Deleu, and Simon Lacoste-Julien.

Gradient-based neural DAG learning.

In ICLR, 2020.

[NMBC18] Vlad Niculae, Andre Martins, Mathieu Blondel, and Claire Cardie. Sparsemap: Differentiable sparse structured inference.

In International Conference on Machine Learning, pages 3799–3808, PMLR, 2018.

[NW99] Jorge Nocedal and Stephen J Wright.

Numerical optimization.

Springer, 1999.

[PJS17] Jonas Peters, Dominik Janzing, and Bernhard Schölkopf.

Elements of causal inference: foundations and learning algorithms.

The MIT Press, 2017.

#### References iii

- [RSW21] Alexander G Reisach, Christof Seiler, and Sebastian Weichwald. Beware of the simulated dag! varsortability in additive noise models. Advances in Neural Information Processing Systems, 34, 2021.
- [TK05] Marc Teyssier and Daphne Koller. Ordering-based search: A simple and effective algorithm for learning bayesian networks. In UAI, pages 548-549, AUAI Press, 2005.
- [YCGY19] Yue Yu. Jie Chen. Tian Gao, and Mo Yu. DAG-GNN: DAG structure learning with graph neural networks. In ICML, Proceedings of Machine Learning Research, 2019.
- Xun Zheng, Bryon Aragam, Pradeep Ravikumar, and Eric P. Xing. [ZARX18] Dags with NO TEARS: continuous optimization for structure learning. In Advances in Neural Information Processing Systems, 2018.
- [ZDA<sup>+</sup>20] Xun Zheng, Chen Dan, Bryon Aragam, Pradeep Ravikumar, and Eric Xing. Learning sparse nonparametric dags. In International Conference on Artificial Intelligence and Statistics, pages 3414–3425, PMLR, 2020.