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Problem Statement

Bayesian Network

) . Markov Factorization of joint distribution
Directed Acyclic Graph (DAG)

4
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e parent-child dependences
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‘ = p(X1 | X2)p(X2)p(Xs | X2, Xa)p(Xa | Xz)

a DAG represents
e parent-child dependences
e conditional independences

How can we learn DAG from data generated from joint distribution?
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Applications

Bayesian Network e Causal Discovery edge := cause-effect link

Directed Acyclic Graph (DAG) —help reason about interventions:

What happens if we increase interest rates?

e [nterpretability sparsest set of dependences

—rhelp interpret model predictions:
@ Which features were decisive?



Challenges

Estimation:
model speficication assumptions on edge functions
p(Xi | pa(Xi))
identifiability non-uniqueness (identify up to
Markov Equivalence Class [PJS17])

X1 = f(XQ,E)?

approximation finite sample from joint distribution



Challenges

Estimation:

model speficication assumptions on edge functions

/ p(Xi | pa(X;))
identifiability non-uniqueness (identify up to

Markov Equivalence Class [PJS17])

approximation finite sample from joint distribution



Challenges

Estimation:
model speficication assumptions on edge functions
p(Xi | pa(Xi))
identifiability non-uniqueness (identify up to
Markov Equivalence Class [PJS17])

approximation finite sample from joint distribution



Challenges

Estimation:

model speficication assumptions on edge functions

p(Xi | pa(X;))
identifiability non-uniqueness (identify up to

Markov Equivalence Class [PJS17])

approximation finite sample from joint distribution

Computation:

NP-hard because of acyclicity constraint [Chi95]
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Continuous Characterization - NoTears

d variables, binary adjacency matrix B € {0, 1}

hop-1 if 3/ | Bj; =1 then self-loop exists
trace(B') counts the number of such cycles

hop-2 if 3/,j | BjjBji =1 then length-2 cycle exists
trace(B?) counts the number of such cycles

hop-k if 3 {i1,i2,...,ik} | []; Bjj., =1 then length-k cycle exists
trace(B*) counts the number of such cycles

Similar characterizations: [YCGY19, BAR22].



Continuous Characterization - NoTears

d variables, binary adjacency matrix B € {0, 1}

; M%EB) = trace(exp(B)) — trace(B°) = trace(exp(B)) — d

Similar characterizations: [YCGY19, BAR22].



Continuous Characterization - NoTears

d variables, binary adjacency matrix B € {0, 1}"2

Constrained Optimization Problem
2
Data X € R™ and weighted adjacency matrix W € R

argminy, L(X, W)
s.t. trace(exp(W o W))—d =0

Solve by e.g. Augmented Lagrangian. Then, threshold W to get B.

Similar characterizations: [YCGY19, BAR22].



Continuous Characterization - NoTears

d variables, binary adjacency matrix B € {0, 1}"2

Advantages
1. genericity: nonparametric (neural) edge functions (e.g. [ZDA 20, LBDL20])

2. scalability: data size, number of parameters
cubic complexity in number of variables (up to ~ 500)

Downsides
1. invalidity: not a DAG at training and at convergence
2. non-modularity: require differentiable operations

3. scale-sensitive: tend to order variables (root to sink) by marginal variance [RSW21]

Similar characterizations: [YCGY19, BAR22].
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Order-based Approach

1 Learn total ordering of variables

OO



Order-based Approach

2 Get corresponding complete DAG




Order-based Approach [Fko3]

3 Mask out inconsistent edges

@0 00




Order-based Approach [Fko3]

3 Mask out inconsistent edges

CN NON

_ NON N

R7: row and column permutation of strictly upper-triangular binary matrix: R € {0,1}9*¢
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4 Prune unnecessary edges
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Order-based Approach [Fko3]

4 Prune unnecessary edges

CN NON

_ NON N

Space of orderings is smaller and more regular than space of DAGs
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Differentiable rank learning

Score vector @ € R? inducing an ordering o(0) € L4

Optimization Problem
o(0) € argmax, ¢y, 0'p°, where p=1[1,2,...,d].

degeneracy in case of ties (some components of 8 are equal)

ORACLE o(0) = argsort(0) (due to The Rearrangement Inequality [HLP52]).
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Differentiable rank learning

Score vector @ € R? inducing an ordering o(0) € L4
Permutahedron P[d]

(12,3

Relaxed Optimization Problem

_
p(0) = argmax,,cppg 0" 1 — 5[ 1l3

soft ordering 1(0)

cc R. A. Nonenmacher

but cannot rank variables. We need a tractable decomposition of (@) into hard orderings:

cannot use all d! orderings
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SparseMAP

Let D = d! be the total number of orderings, and AP be the D-dimensional simplex

n= ji: azp’

oEYy

Sparse decomposition - categorical regularization

-
P MAP(6) € arg maxae 0 8 Eonalpo] = 5 IIBonalpolll3

2

solved by Active-Set Algorithm [N\W99] — calls to argsort oracle
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Top-k Sparsemax

Let D = d! be the total number of orderings, and AP be the D-dimensional simplex

p=>Y_ a.;p’

oEYy

Sparse decomposition - marginal regularization
For k > 2

7
atop—k sparsemax(e) € arg MaXg e AP axflo<k OTEGNQ[[)U] _ E Ha”§ ’

— calls to top-k permutations oracle



Top-k Permutations Oracle - Contribution!

Data: k € {1,...,d'}, 6 € R?

Result: top-k permutations T, (0)

P(6) « {0" €r argmax,cy, £0(0)}

while | T (0)| < k do
0 ER aArg Max, ¢ p()\ 1,(0) 86(7);
P(6) <+ P(@)U{oj|je{l,...,d—1}};
Tk(O) = Tk(0) U {0’};

end

contour lines

e set of candidates: P(6) e score: go(o) =07 p°

e best permutations: T(0) e adjacent transposition: oj := o (j j+1)



Overall DAG Learning Problem

dlg, min ((P, 0)
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Overall DAG Learning Problem

min
0

s.t. ®*(0) = argming Zdjf (xj7 foi (X o (R”)J-)) + \Q(P)



Comparison with SOTA on Real Data

Metrics
SHD Structural Hamming Distance — # wrong edges

SID Structural Interventional Distance — # broken causal paths
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Comparison with SOTA on Real Data

Legend: <«—— True Edge <—— Correct prediction <--- Missing Edge <—— Wrong prediction

True DAG Daguerreotype (ours)
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SparseMAP vs Top-k Sparsemax on Synthetic Data
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Takeaways and Future Work

Validity: DAG at any stage of training

End-to-end: order and edges jointly optimized
e Modularity: can plug-in non-differentiable edge estimators

e Pareto-optimality: empirically best trade-off SHD-SID

13



Takeaways and Future Work

e Validity: DAG at any stage of training
e End-to-end: order and edges jointly optimized
e Modularity: can plug-in non-differentiable edge estimators

e Pareto-optimality: empirically best trade-off SHD-SID

Scale-robustness? preliminary results suggest robust to variable scale
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Takeaways and Future Work

e Complexity: still at least quadratic in d
e Sub-optimality: combinatorial space + relaxations
e Non-uniqueness: a DAG is consistent with multiple orderings

e need for better understanding of relationship DAG-space vs Order-space
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Want to join the team?
Opening for research intern (remote or in Montreal)
https://www.servicenow.com/research/visiting_researcher.html

N%,a

Luca Franceschi, AWS Matt Kusner, UCL Vlad Nicular, UVA

Link to arxiv: https://arxiv.org/submit/4710329

Thank you for your attention!
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