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Outline
Background Work

- Representation Learning
- Kolmogorov Complexity
- Information bottleneck Principle

Motivation

- Representation Collapse
- Limitations on Multi-Step Reasoning

Our Solution: Seq-VCR (Sequential Variance Covariance Regularization)

- Encourages Feature Diversity & Prevents Collapse
- Enhances Information Propagation Across Layers

 Experimental Results

- Improving representational capacity
- Improving Performance Multi-Step Arithmetic Reasoning
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Representation Learning

Representation learning is finding the good description of raw data into structured, 
meaningful abstractions that are easier to understand, process and reason about.
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But what makes a good representation??
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The Quest for Efficient Learning

Occam’s Razor (14th century):

Among competing hypotheses, the one with the fewest assumptions (simpler one) should be 
preferred.

Aristotle's Posterior Analytics (4th Century BC):

The best demonstration is the one which is derived from the fewer postulates or hypotheses.
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 Kolmogorov Complexity –  Measure of Simplicity

The complexity of data is the length of the shortest program(compression) that generates it.

● A datapoint like 123123123123 has low complexity (it can be described as “repeat 123 four 
times”).

● A random sequence like 9s4jX2#@!k5 has high complexity (no compressible pattern).
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Information Bottleneck Principle (Tishby et. al.)

  When X: input, Z: latent representation Y: output,

  Learning Objective:

L = − I(Z; Y) + β I(X; Z) 

7

Relevance Compression

● I(Z;Y): The mutual information between the Z and the output Y (the next token), which measures how much information in Z is 
relevant for predicting the output.

● β: A tradeoff parameter that controls the balance between compression (minimizing I(X; Z)) and relevance (maximizing I(Z;Y)).

● I(X;Z): The mutual information between the input X (the previous tokens in LLMs) and the latent representation Z, which 
measures how much relevant information from the input is retained in Z.

https://arxiv.org/abs/1503.02406


Measuring Compression/Representation Collapse

Entropy H(X) and H(Z), serves as an upper bound to MI:

○ I(X; Z) = H(X) − H(X ∣ Z) ≤ H(X)
○ I(X; Z) = H(Z) − H(Z ∣ X) ≤ H(Z)

● Compression occurs when H(Z) decreases across layers.
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Matrix/Prompt Entropy as Representation Collapse (Giraldo et al., Skean et al.)
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Eigenvalue of K

● Matrix-Based Entropy, is a tractable surrogate for Rényi’s α-order entropy, computed using eigenvalues of a similarity kernel.

● We use Linear Kernel, aligning with the linear representation hypothesis (Park et al., 2024), that LLMs encode high-level concepts 
(truth, honesty etc.) in linearly separable directions.

● As a linear kernel K, we can use either the Gram matrix (Z(l)Z(l)T) or the Covariance matrix (Z(l)T Z(l)), where Z(l) represents token-level 

representations from the l-th layer with dimension d. Both matrices share the same nonzero eigenvalues, ensuring that the entropy 

calculation remains consistent regardless of the choice of kernel.

● The entropy captures how well information is spread along linear directions in the representation space.

● If representations are well-distributed, entropy is high; if they collapse into a few dominant directions, entropy is low.

α -> 1, this reduces to Shannon entropy.

https://arxiv.org/abs/1211.2459
https://arxiv.org/abs/2301.08164
https://arxiv.org/abs/2311.03658


Training Dynamics and Prompt Entropy (Skean et. al)
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Pre-training dynamics of Pythia 410M parameter 
model:

● Representation Collapse in Intermediate 
Layers: As pre-training progresses, 
intermediate layers exhibit increased 
representation collapse.

● Information Bottlenecks: Collapse restricts 
the flow of information across layers, potentially 
limiting the model’s capacity to integrate 
knowledge effectively.

● Task-Specific Implications:
a. While beneficial for certain tasks 

requiring compact representations,
b. It may hinder multi-step reasoning tasks 

that require deeper information 
propagation.

https://arxiv.org/pdf/2412.09563?


Limitations of LLM: Multi-Step Reasoning
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Final Answer: Richard Nixon

Answer: Richard Nixon

Answer: 1969

Part 2: Who was the president of United States in 1969?

Part 1: When the Apollo 11 moon landing took place?

Who was the president of the United States when the Apollo 11 moon landing 
took place?



Tokenwise Complexity Imbalance on Multiplication Task
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Challenges in nxn Multiplication:

 Multi-Step Computation:

● The task requires storing intermediate 
results, demanding a deeper model for 
accurate processing.

Complexity Imbalance:

● Middle token requires more interactions 
with tokens and better representations



U-Shape like Token Accuracy on Multiplication
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Finetune GPT2-small on nxn integer Multiplication 
without Chain of Thought:

● We observer U-shape like token-wise accuracy 
distribution

● Model can predict the peripheral tokens but fails 
on the middle ones. 

Output Token Position
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Common solutions for multi-step reasoning

- Increasing Model representation capacity: increasing model size

GPT2 < GPT3.5 < GPT4

- Inference time compute: decomposition with CoT prompting
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Reasoning Traces and Prompt Entropy (Skean et. al)
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Chain of Thought Reasoning Traces of Qwen 2.5 
and Qwen 2.5-Math Models on GSM-8K:

● The base model (Qwen 2.5) exhibits greater 
prompt compression.

● The fine-tuned model (Qwen 2.5-Math) 
maintains higher entropy, indicating greater 
information retention.

https://arxiv.org/pdf/2502.02013


  Things required for Multi-step Reasoning

1) Inference time compute

→ CoT tokens or pause tokens
We propose to use pause tokens as a proxy to add more inference time compute for 
the model

2) More Representation Capacity
→ Increased model size or Entropy regularization: Sec-VCR
We aim to increase the representation capacity of same size models by reducing their 
representation collapse.
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More Compute Through Pause tokens (Goyal et al.)
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<question> </pause_start> <pause> <pause> </pause_end> <answer>

● Pause tokens are like randomly initialized tokens 
repeated and appended with input tokens

https://arxiv.org/pdf/2310.02226


Increase Representation capacity: Seq-VCR
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Seq-VCR

where:

● C is the covariance matrix across the batch dimension of shape dxd
● λ1 and λ2 are regularization coefficients.
● η is a small constant for numerical stability.
● Variance Term ensures feature variance does not collapse.
● Covariance Term encourages decorrelation between features.

● Extending VICReg(Bardes et al.) for LLM Representations:
○ VICReg (Variance-Invariance-Covariance Regularization) was originally proposed for vision models.
○ We extend VICReg for LLMs to improve representation learning by diagonalizing the Covariance Matrix.

● Covariance Diagonalization and Entropy:
○ Prior work (Shwartz-Ziv et al.) shows that making the covariance matrix diagonal increases the entropy of 

representations.
○ Encouraging decorrelated features prevents representation collapse, promoting more efficient information 

propagation

https://arxiv.org/abs/2105.04906
https://arxiv.org/search/cs?searchtype=author&query=Shwartz-Ziv,+R


Configurations
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• Pause: Inserting pause tokens in the input sequence, no regularization.

• Vanilla: Standard training/finetuning without regularization or pause/CoT tokens.

• Seq-VCR: Applying Seq-VCR regularisation, no pause tokens.

• Seq-VCR + Pause: Combining Seq-VCR with pause tokens.

• Pretrained: Pre-trained language Model.

• CoT: Training/Finetuning with with CoT tokens.



Improving Representation Collapse 
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Finetuning Dynamics on Multiplication

21

Training Loss Exact match Accuracy Token-wise Accuracy



Results on Multiplication
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• Accuracy (exact match) on 4 × 4 and 5 × 5 digits Multiplication Tasks. GPT-3.5 and GPT-4 results are taken from Deng et al.) 
which are produced by 5-shot prompt

https://arxiv.org/pdf/2311.01460


Training from Scratch on more dataset
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Training Dynamics on Arithmetic Expression Task

Dynamics of model training from scratch on 
Arithmetic expression task

● We observe sharp transition with Seq-VCR



Varying # Layers
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● We see consistent gains across number of layers



Varying Task Complexity
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Varying Pause Tokens and Comparing Vanilla vs 
Seq-VCR + Pause Tokens for different Task 
Complexities.

● Low, High, Medium refer to 4, 5, 6 arithmetic 
Operators respectively

● We using pause tokens with regular training is 
not useful.



Increase Representation Capacity in Pre-training (Gerasimov et. al.)
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• Store the past layers activations to attend over

https://arxiv.org/pdf/2502.09245


Conclusion & Future Directions

 Key Findings

● Matrix-based entropy provides a robust framework for analyzing LLM representations.

● Representation collapse during pre-training restricts information flow, impacting multi-step reasoning.

● Seq-VCR regularization enhances representation quality and mitigates collapse.

 Next Steps

● Investigate Seq-VCR interventions to improve LLMs' general reasoning ability.

● Explore pretraining improvements to develop models with higher representation capacity.
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Thank You
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