ServiceNow is developing a self-healing IT environment

  • Now on Now
  • Tomer Mekhty
  • Solutions
  • 2020
May 07, 2020

ServiceNow works to develop a self-healing IT environment

ServiceNow® is facing one of the biggest opportunities to date: developing a self-healing IT environment that makes proactive IT support a reality.

Although the concept of self-healing has been around for at least a decade, the ability to achieve it has fallen short. A lack of system intelligence stopped us from predicting and preventing many issues without human intervention somewhere in the process.

AI technology is changing that paradigm. Thanks to intelligent operations, we can now provide proactive support with limited or no human interaction. Data-driven workflows can be used to automatically detect, analyze, and remediate issues before or just after they occur.
 

Quote on how intelligent operations allow for self-healing it environments

Moving from reactive to proactive
To guide the journey toward self-healing, we needed a framework, a structured, data-driven approach that would help us shift as many issues as we could from a reactive, human response to a proactive, automated response. It’s a practical framework for AIOps that classifies IT issues into three categories:

1.     Respond only. In this category, issues are submitted by people. These issues usually get routed to the IT Service Desk, which assesses the extent of the impact and calculates the priority. Even though this scenario is reactive in nature, I believe that we can be intelligent about the actual impact and priority and assign it to most qualified operational team to accelerate resolution.

The information and data on the Now Platform® enable us to be intelligent about estimating the impact. For example, if Finance notes that an ERP system is down during month end close, it automatically becomes a P1 priority. Another recent example is Customer Support. After we mobilized our Customer Support folks to work from home, any voice issues reported by support engineers become a P1. You can correlate many different data points such as persona, time, location, service, and application, to better understand the impact. This approach is better than asking an employee about the impact, which is usually subjective.

After the issue is resolved, we look at the root cause, again, in a data-driven way. If the issue is a systematic one, we trigger a process or technology improvement to capture the missing signal, bring that data into ServiceNow Event Management, and push it into the next category in the framework—prepare and respond.

2.     Prepare and respond. In this category, we use ServiceNow® ITOM to first reduce monitoring noise by almost 99%. Then we generate real, actionable incidents by using event correlation, pattern recognition, and anomaly detection. The ultimate outcome of AIOps in my opinion is our ability to understand the exact impact of an infrastructure-related issue on a critical service, application, or an end user. In comparison to the previous category, IT is better prepared to respond; our teams can quickly react and minimize the impact on end users. We perform the same impact analysis and dynamic prioritization as described above, but the resolution is still manual.

Many of our use cases are in this category. Take for example critical third-party SaaS applications. We can’t prevent apps like video conferencing from going down, but we can be smart about triggering workflows, such as failover processes or even proactively ordering new hardware if it is an edge issue. It helps us quickly mobilize operational teams and focus on the right thing.

3.     Predict and prevent (self-healing). In this category, a full-cycle AIOps process comes into play. IT can both predict and prevent issues using machine learning to identify anomalies, then proactively take a fully automated action. There is zero impact on end users and zero touch by the Ops teams. Our operations are much more efficient because we’ve removed the human factor. One of our most complex use cases in this category was also one of the first we could resolve proactively—our VPN service. By identifying abnormalities and correlating them with endpoint device data, we were able to automate the restoration of VPN services. Another use case was the wireless network connectivity. We reduced the amount of Wi-Fi related issues by almost 70% in one year while our company size increased by 30%. Needless to say, by proactively remediating these issues, we bring operational costs down and employees productivity up.
 

Implementing the framework at ServiceNow
We try to map all IT operational issues in one of these three buckets. The objective is to move as many as possible to the Predict and Prevent category for self-healing, especially those that directly impact critical services or applications. These issues usually require qualified L2 or L3 engineers to resolve. So far, we can predict and prevent more than 20% of issues, focusing primarily on network connectivity, infrastructure resources allocation and critical SaaS applications. Our ultimate goal is to reduce issues reported by employees to as close to ZERO as possible. To be able to achieve this stretch goal requires a significant shift in approach, technology, and sometimes, people.

IT needs to embrace a data-driven culture and evolve from analyzing post-failure metrics to real-time data analytics for accurate prediction of future failures. Only then can self-healing take center stage.

To learn more about AIOps and other topics, visit the Now on Now channel at Knowledge 2020.

© 2020 ServiceNow, Inc. All rights reserved. ServiceNow, the ServiceNow logo, Now, and other ServiceNow marks are trademarks and/or registered trademarks of ServiceNow, Inc. in the United States and/or other countries. Other company names, product names, and logos may be trademarks of the respective companies with which they are associated.

Topics

  • Scaled Agile Framework (SAFe): business man looking at phone while standing on bridge overlooking a city
    IT Management
    How the Scaled Agile Framework (SAFe) truly supports business
    The Scaled Agile Framework (SAFe) delivery model can help IT leaders manage the transition from a stability-focused to a continuously evolving infrastructure.
  • The role of the manager: a manager and employee in conversation on a couch
    Employee Experience
    4 ways Manager Hub simplifies the role of the manager
    As the connective tissue between an organization and its employees, the role of the manager is more complex, and more important, than ever before. Learn more.
  • How delivery giant Yamato uses data science: uniformed Yamato delivery worker
    Customer Stories
    Delivery giant Yamato uses data science to drive growth
    Maintaining operational excellence while dealing with a surge in orders is a key pillar of Yamato’s digitization strategy—one that relies on data science.

Trends & Research

  • Total experience companies outperform: prism refraction with an arrow pointing to the right
    Employee Experience
    Survey says: Total experience-focused companies outperform
  • Customer service: smiling businessman on phone walking outdoors
    Customer Experience
    Survey: 3 tips to deliver world-class customer service
  • Enterprise SRE (site reliability engineering): where service reliability and business agility meet
    Application Development
    Service quality and the rising need for enterprise SRE

Year