Accueil
Équipe
Publications
Open Source
Démos
Évènements
Blog
Carrières
Nous joindre
Français
Français
English
ServiceNow
ServiceNow recherche
Tags
RAG
ServiceNow recherche
RAG
Multi-task retriever fine-tuning for domain-specific and efficient RAG
Retrieval-Augmented Generation (RAG) has become ubiquitous when deploying Large Language Models (LLMs), as it can address typical …
Patrice Béchard
,
Orlando Marquez
Knowledge Discovery and Data Mining, 2025.
PDF
Citation
Generating a Low-code Complete Workflow via Task Decomposition and RAG
AI technologies are moving rapidly from research to production. With the popularity of Foundation Models (FMs) that generate text, …
Orlando Marquez
,
Patrice Béchard
Conference on AI Engineering (CAIN), 2025.
PDF
Citation
XC-Cache: Cross-Attending to Cached Context for Efficient LLM Inference
In-context learning (ICL) approaches typically leverage prompting to condition decoder-only language model generation on reference …
João Monteiro
,
Étienne Marcotte
,
Pierre-André Noël
,
Valentina Zantedeschi
,
David Vazquez
,
Nicolas Chapados
,
Christopher Pal
,
Perouz Taslakian
Conference on Empirical Methods in Natural Language Processing (EMNLP), 2024.
PDF
Citation
Code
Reducing hallucination in structured outputs via Retrieval-Augmented Generation
A common and fundamental limitation of Generative AI (GenAI) is its propensity to hallucinate. While large language models (LLM) have …
Patrice Béchard
,
Orlando Marquez
North American Chapter of the Association for Computational Linguistics (NAACL), 2024.
PDF
Citation
Vidéo
Citation
×