ServiceNow Research

A Survey of Self-Supervised and Few-Shot Object Detection

Abstract

Labeling data is often expensive and time-consuming, especially for tasks such as object detection and instance segmentation, which require dense labeling of the image. While few-shot object detection is about training a model on novel (unseen) object classes with little data, it still requires prior training on many labeled examples of base (seen) classes. On the other hand, self-supervised methods aim at learning representations from unlabeled data which transfer well to downstream tasks such as object detection. Combining few-shot and self-supervised object detection is a promising research direction. In this survey, we review and characterize the most recent approaches on few-shot and self-supervised object detection. Then, we give our main takeaways and discuss future research directions.

Publication
IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI)
Gabriel Huang
Gabriel Huang
Research Scientist

Research Scientist at AI Trust and Governance Lab located at Montreal, QC, Canada.

Issam H. Laradji
Issam H. Laradji
Research Scientist

Research Scientist at Low Data Learning located at Vancouver, BC, Canada.

David Vazquez
David Vazquez
Manager of Research Programs

Manager of Research Programs at Research Management located at Montreal, QC, Canada.