ServiceNow Research

A Soft Labeling Approach to Develop Automated Algorithms that Incorporate Uncertainty in Pulmonary Opacification on Chest CT using COVID-19 Pneumonia


Rationale and objectives: Hard data labels for automated algorithm training are binary and cannot incorporate uncertainty between labels. We proposed and evaluated a soft labeling methodology to quantify opacification and percent well-aerated lung (%WAL) on chest CT, that considers uncertainty in segmenting pulmonary opacifications and reduces labeling burden.

Materials and methods: We retrospectively sourced 760 COVID-19 chest CT scans from five international centers between January and June 2020. We created pixel-wise labels for >27,000 axial slices that classify three pulmonary opacification patterns: pure ground-glass, crazy-paving, consolidation. We also quantified %WAL as the total area of lung without opacifications. Inter-user hard label variability was quantified using Shannon entropy (range=0-1.39, low-high entropy/variability). We incorporated a soft labeling and modeling cycle following an initial model with hard labels and compared performance using point-wise accuracy and intersection-over-union of opacity labels with ground-truth, and correlation with ground-truth %WAL.

Results: Hard labels annotated by 12 radiologists demonstrated large inter-user variability (3.37% of pixels achieved complete agreement). Our soft labeling approach increased point-wise accuracy from 60.0% to 84.3% (p=0.01) compared to hard labeling at predicting opacification type and area involvement. The soft label model accurately predicted %WAL (R=0.900) compared to the hard label model (R=0.856), but the improvement was not statistically significant (p=0.349).

Conclusion: Our soft labeling approach increased accuracy for automated quantification and classification of pulmonary opacification on chest CT. Although we developed the model on COVID-19, our intent is broad application for pulmonary opacification contexts and to provide a foundation for future development using soft labeling methods.

Keywords: chest CT; pulmonary opacification; soft labeling; uncertainty.

Academic Radiology
Issam H. Laradji
Issam H. Laradji
Research Scientist

Research Scientist at Low Data Learning located at Vancouver, BC, Canada.