ServiceNow Research

Synbols: Probing Learning Algorithms with Synthetic Datasets

Abstract

Progress in the field of machine learning has been fueled by the introduction of benchmark datasets pushing the limits of existing algorithms. Enabling the design of datasets to test specific properties and failure modes of learning algorithms is thus a problem of high interest, as it has a direct impact on innovation in the field. In this sense, we introduce Synbols – Synthetic Symbols – a tool for rapidly generating new datasets with a rich composition of latent features rendered in low resolution images. Synbols leverages the large amount of symbols available in the Unicode standard and the wide range of artistic font provided by the open font community. Our tool’s high-level interface provides a language for rapidly generating new distributions on the latent features, including various types of textures and occlusions. To showcase the versatility of Synbols, we use it to dissect the limitations and flaws in standard learning algorithms in various learning setups including supervised learning, active learning, out of distribution generalization, unsupervised representation learning, and object counting.

Publication
Conference on Neural Information Processing Systems (NeurIPS)
Alexandre Lacoste
Alexandre Lacoste
Research Scientist

Research Scientist at Human Decision Support located at Montreal, QC, Canada.

Issam H. Laradji
Issam H. Laradji
Research Scientist

Research Scientist at Low Data Learning located at Vancouver, BC, Canada.

Alexandre Drouin
Alexandre Drouin
Research Lead

Research Lead at Human Decision Support located at Montreal, QC, Canada.

David Vazquez
David Vazquez
Manager of Research Programs

Manager of Research Programs at Research Management located at Montreal, QC, Canada.